ISSN 2348-7

Research Innovator

International Multidisciplinary Research Journal

Vol II Issue V : October - 2015

Research Innovator

ISSN 2395-4744 (Print); 2348-7674 (Online)

A Peer-Reviewed Refereed and Indexed

Multidisciplinary International Research Journal

Volume II Issue V: October - 2015

Editor-In-Chief

Prof. K.N. Shelke
Head, Department of English, Barns College of Arts, Science \& Commerce, New Panvel (M.S.) India

Editorial Board

Dr. A.P. Pandey, Mumbai, India
Dr. Patricia Castelli, Southfield, USA
Dr. S.D Sargar, Navi Mumbai, India
Christina Alegria, Long Beach, USA
Prin. H.V. Jadhav, Navi Mumbai, India
Dr. Adrianne Santina, McMinnville, USA
Prof. C.V. Borle, Mumbai, India
Dr. Nirbhay Mishra, Mathura, India

Advisory Board

Dr. S.T. Gadade
Principal, C.K. Thakur College,
New Panvel, India

Dr. R.M. Badode

Professor \& Head,
Department of English,
University of Mumbai, India
Dr. G.T. Sangale
Principal, Veer Wajekar College, Phunde, India

Research Innovator is peer-reviewed refereed and indexed multidisciplinary international research journal. It is published bi-monthly in both online and print form. The Research Innovator aims to provide a much-needed forum to the researchers who believe that research can transform the world in positive manner and make it habitable to all irrespective of their social, national, cultural, religious or racial background.

With this aim Research Innovator, Multidisciplinary International Research Journal (RIMIRJ) welcomes research articles from the areas like Literatures in English, Hindi and Marathi, literary translations in English from different languages of the world, arts, education, social sciences, cultural studies, pure and applied Sciences, and trade and commerce. The space will also be provided for book reviews, interviews, commentaries, poems and short fiction.
-:Subscription:-

	Indian Individual / Institution	Foreign Individual / Institution
Single Copy	$₹ 600$	$\$ 40$
Annual	$₹ 3000$	$\$ 200$
Three Years	$₹ 8000$	$\$ 550$

-:Contact:-

Prof. K.N. Shelke

Flat No. 01,
Nirman Sagar Coop. Housing Society,
Thana Naka, Panvel, Navi Mumbai. (MS), India. 410206.knshelke @ yahoo.in
Cell: +91-7588058508

Research Innovator

A Peer-Reviewed Refereed and Indexed International Multidisciplinary Research Journal

Volume II Issue V: October - 2015
 CONTENTS

Sr. No.	Author	Title of the Paper	Page No.
1	Kingsley O. Ugwuanyi \& Sosthenes N. Ekeh	Shifting the Borders: Genre-crossing in Modern Africa Drama	1
2	Prof. Mahmoud Qudah	The Acquisition of the Comparative and Superlative Adjectives by Jordanian EFL Students	12
3	Anas Babu T T \& Dr. S. Karthik Kumar	The Victimized Marxism in Asimov's Foundation Novels	21
4	Ms. D. Anushiya Devi \& Dr. L. Baskaran	Manju Kapur's Home: Tradition Battles With Transition	25
5	Dr. Archana Durgesh	Adhe Adhure: Savitri's Quest for a Complete Man	30
6	Dr. S. Karthik Kumar	Transcending Cultural Barriers: A Study of Pearl S. Buck's East Wind: West Wind	36
7	Dr. Rajib Bhaumik	Bharati Mukherjee's Jasmine: A Study of Disjunctions in a Synaptic Location of Adversative Unipolarity	42
8	Abdul Rasack P. \& Dr. S. Karthik Kumar	Acquiring Listening and Speaking Skills through Songs in CLT Classrooms	51
9	Dr. B. N. Gaikwad \& Sumeet R. Patil	The Reflections of Humiliation in the Autobiographies of Vasant Moon and Omprakash Valmiki	55
10	Dipika Mallick	Caste System: A Historical Perspective	61
11	S. Muhilan $\&$ Dr. J. Uma Samundeeswari	The Pain and Struggle of Migration in John Steinbeck's Of Mice and Men	66
12	Dr. Archana Durgesh \& Ekta Sawhney	Coming Back from Death-Near Death Experiences	71
13	Mansi Chauhan	Home as the Location of History: Reading Kamila Shamsie's Salt and Saffron	77

14	Dr. G. Vasuki \& V. Vetrimni	Philosophy through Symbolism: A Study of Theodore Dreiser's Sister Carrie	83
15	Dr. Rajib Bhaumik	The Woman Protagonist in Bharati Mukherjee's Wife: a Study of Conflictual Ethics between Indianness and Transplantation	90
16	Dr. G. Vasuki \& R. Velmurugan	Treatment of Slavery in Toni Morrison's Novel Beloved	102
17	Dr. Archana Durgesh	Shakuntala - Myth or Reality: Man Enjoys and Woman Suffers	109
18	Dr. Laxman R. Rathod	Interdisciplinary Approach Mechanism of Biopesticides: Solution of Trichoderma in Agriculture Crops	119
19	Mr. Arvindkumar Atmaram Kamble	Translation Theory: Componential Analysis of Mahesh Elkunchwar's Drama Old Stone Mansion	126
20	Dr. Bipinkumar R. Parmar	Mahesh Dattani's Plays: Reflections on Global Issues	130
21	Thokchom Ursa	Maternal Nutrition during Pregnancy among the Meitei Women and its Effect on Foetal Growth	136
22	Ksh. Surjit Singh \& K.K. Singh Meitei	Some Methods of Construction of Incomplete Block Neighbor Design	144
Poetry			
23	W. Christopher Rajasekaran	My Son	150

Some Methods of Construction of Incomplete Block Neighbor Design

Ksh. Surjit Singh

Research Scholar
Department of Statistics, Manipur University, (Manipur) India

Abstract

Several methods of construction of neighbor designs in complete as well as incomplete had already been presented along with examples. In this paper, we present a construction method of Incomplete Block Neighbor (IBN) designs based on the forward and the backward differences arising from initial set(s) in applying the Lemma proposed by Rees (1967). These concepts of neighbor designs were introduced by Rees ib id. Such designs have uses mainly in the field of Serology and some of them can be used for animal husbandry experiments. His contribution envisages to meet the requirement of arrangement in circles of samples from a number of virus preparations in such a way that over the whole set a sample from each virus preparation appears next to the sample from every other virus preparation.

Key Words: Neighbor design, Circular block, Incomplete Block Neighbor, Initial block

1. Introduction:

The samples of different virus preparations (treatments) are arranged on the circular blocks in which every pair of treatments occurs as neighbor equally often ensuring a balance situation. These concepts of neighbor designs were introduced by Rees (1967). Such designs have use mainly in the field of Serology and some of them can be used for animal husbandry experiments. The constructions of neighbor designs in complete as well as incomplete blocks were given by Rees ib.id. The constructions of incomplete block designs are exclusively due to Lawless (1977), Hwang (1973), Hwang and Lin (1977), Dey and Chakravarty (1977), Kageyama (1979), Meitei (1996) and others. Kageyama (1979) starting from BIB design on v treatments by inserting " 0 's" in the block, presented three series of neighbour designs, whenever a finite Abelian Group of order v exist. Hwang (1973) had given the constructions of neighbor designs with parameters (i) $v=2 k+1, \lambda=1$ (ii) $v=2^{\mathrm{i}} k+1, \lambda=1, k \equiv 0 \bmod (2)($ iii) $v=2 m k+1, \lambda=1, \quad k \equiv 0 \bmod (4)$ through examples for only $k<7$. For $k \geq 7$ each of the initial blocks of the IBN designs are constructed by a recursive method based on the initial blocks of size $k<7$. Meitei (1996) had proposed a method of construction of even treatments

2. Definition and Notations

2.1 Definition

An Incomplete Block Neighbor design is an arrangement of v treatments into b blocks such that each block has $k(<v)$ treatments, not necessarily distinct, each treatment appears r times in the configuration and every treatment is a neighbour of every other treatment precisely λ times. It will be denoted by IBN design ($v, b, r, k, \lambda)$. The parameters satisfy the following relations $v r=b k$ and $\lambda(v-1)=2 r$.

2.2 Definition

Given a set, $S=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ where the forward and the backward differences of S as follows:

```
\pm[\mp@subsup{a}{2}{}-\mp@subsup{a}{1}{}];\pm[\mp@subsup{a}{3}{}-\mp@subsup{a}{2}{}];\pm[\mp@subsup{a}{4}{}-\mp@subsup{a}{3}{}];\ldots;\pm[\mp@subsup{a}{k}{}-\mp@subsup{a}{k-1}{}];\pm[\mp@subsup{a}{1}{}-\mp@subsup{a}{k}{}].
```

Lemma 2.1:[Rees (1967)] Consider a module, M, of v elements, viz; 0, 1, 2, ..., v-1. Consider t basic blocks $\mathrm{S}_{\mathrm{j}}=\left\{\mathrm{i}_{1 \mathrm{j}}, \mathrm{i}_{2 \mathrm{j}}, \mathrm{i}_{3 \mathrm{j}}, \ldots, \mathrm{i}_{\mathrm{k}\}}\right\} ; \mathrm{j}=1,2,3, \ldots, \mathrm{t}$, each block containing k (not necessarily distinct) elements of module v . These t basic blocks, satisfying the following conditions, when developed $\bmod (\mathrm{v})$, generate an IBN design with parameters $v, b=v t, r=k t$, λ
a) among the totality of forward and backward differences reduced modulo v , arising from the t basic blocks, every non zero element of the module occurs equally frequently (say), λ times and
b) the sum of the forward differences arising from each basic block is zero.

The condition (b) satisfies for any block and thus, it is enough to satisfy the condition (a) in order to construct a neighbor design.

3. Basic Principle of Construction:

For a given $v=2 n+1 ; n \geq 3$. Consider $\operatorname{GF}(v)$. Further, consider another set $\left\{a_{1}, a_{2}, \ldots, a_{r}, c_{1}, c_{2}, \ldots, c_{s}\right\} ; r+s=n$ such that
(i) $\quad a_{i} \in\{1,2,3, \ldots, n\}$ and $c_{j} \in\{-1,-2,-3, \ldots,-n\} ; r+s=n$ and i, j take at least the values " 1 "
(ii) $\sum_{i=1}^{r} a_{i}+\sum_{j=1}^{s} c_{j}=p v ; p \in\{0,1,2,3, \ldots\}$
(iii) $\quad \sum_{i=1}^{r} a_{i}-\sum_{j=1}^{s} c_{j}=n(n+1) / 2$ and
(iv) $0<\frac{n(n+1)-(2 p v)}{4}<v$
(v) $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}=\{1,2,3, \ldots, n\}-\left\{-c_{1},-c_{2}, \ldots,-c_{s}\right\}$

Obviously, the maximum value of r and s are $n-1$. And also $a_{i} \neq c_{j}$ for all i, j. From (ii) and (iii), we have

$$
\begin{gather*}
-2 \sum_{j=1}^{s} c_{j}=\frac{n(n+1)}{4}-p v \text {. Then } \\
\left|\sum_{j=1}^{s} c_{j}\right|=\frac{n(n+1)-(2 p v)}{4} \tag{3.1}
\end{gather*}
$$

The elements of $\left\{a_{1}, a_{2}, \ldots, a_{r}, c_{1}, c_{2}, \ldots, c_{s}\right\}$ are unknown, but to be determined as explicitly shown here after. The procedure for identifying a_{i} 's and c_{j} 's, which attempts first to determine c_{j} 's and secondly to determine a_{i} 's, after having determined c_{j} 's, follows here below.
Step 1: a) If $\left|\sum_{j=1}^{s} c_{j}\right| \Theta\{1,2,3, \ldots, n\}$ then the value of c_{1} will be substituted by $-\left|\sum_{j=1}^{s} c_{j}\right|$ and $s=1$. Obviously, $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}=\{1,2,3, \ldots, n\}-\left\{-c_{1}\right\}$ and $r=n-1$.
b) If $\left|\sum_{j=1}^{s} c_{j}\right| €\{n+1, n+2, \ldots, 2 n\} ; c_{1}=\left|\sum_{j=1}^{s} c_{j}\right|-v$. Then proceed the Step 2.

Step 2: a) If $\left|\sum_{j=2}^{s} c_{j}\right| \Theta\{1,2,3, \ldots, n\}$ then the value of c_{2} will be substituted by $-\left|\sum_{j=2}^{s} c_{j}\right|$ and $s=2$. Obviously, $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}=\{1,2,3, \ldots, n\}-\left\{-c_{1},-c_{2}\right\}$ and $r=n-2$.
b) If $\left|\sum_{j=2}^{s} c_{j}\right| \epsilon\{n+1, n+2, \ldots, 2 n\} ; c_{2}=\left|\sum_{j=2}^{s} c_{j}\right|-v$. Then proceed in the similar manner, further.

The process for finding a_{i} 's and c_{j} 's will be continued at most $(n-1)$ step as $0<s<n$. Thus, after having determined c_{j} 's, the process gives the values of the a_{i} 's which are the only elements belonged to the set, $\{1,2,3, \ldots, n\}-\left\{-c_{1},-c_{2}, \ldots,-c_{s}\right\}$. And the range of $i \& j$ are immediately determined.
Let $S^{*}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} ; x_{d} \in\left\{a_{1}, a_{2}, \ldots, a_{r}, c_{1}, c_{2}, \ldots, c_{s}\right\}$ and x_{d} occurs exactly once in S^{*}, be the set such that $2\left|x_{1}\right|=\left|x_{n}\right| . \quad$ Obviousely, $S^{*} \quad$ i.e., $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \approx\left\{a_{1}, a_{2}, \ldots, a_{r}, c_{1}, c_{2}, \ldots, c_{s}\right\}$ and $n=r+s$.

The set S^{*} is transformed to the sets S and S^{\prime} as

$$
\begin{align*}
S & =\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \tag{3.2}\\
S^{\prime} & =\left\{A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{n}^{\prime}\right\} \tag{3.3}
\end{align*}
$$

where $A_{l}=\sum_{i=1}^{l} x_{d} \bmod (v), A_{l}=v-A^{\prime}, l=1,2,3, \ldots, n$. Thus we can get a theorem given below.
Theorem 3.1: For $v=2 n+1$; ' n ' natural number, the two initial set, S and S^{\prime}, when developed $\bmod (v)$, yields an IBN design with parameters $v=2 n+1, b=2 v, r=2 k$, $k=n, \lambda=2$.

Proof: As a result of developing the initial block, S and S^{\prime}, containing n elements under reduction module $2 \mathrm{n}+1$, the elements in the configuration are $0,1,2, \ldots, 2 n$. Therefore $v=$ $2 n+1$.

By method of developing the two initial sets, S and S^{\prime}, it is clear that $0,1,2, \ldots, 2 n$ exactly twice when developed $\bmod 2 n+1$. As there are k elements in each initial block, then every element of Module of $2 n+1$ viz., $0,1,2, \ldots, 2 n$ occurs $2 k$ times in the configuration of the blocks developed from S and S^{\prime}.
The forward and the backward differences arisen from, S and S^{\prime} are:
$S:\left(A_{2}-A_{1}\right),\left(A_{3}-A_{2}\right), \ldots,\left(A_{n}-A_{(n-1)}\right),\left(A_{1}-A_{n}\right)$
i.e., $\pm x_{2}, \pm x_{3}, \ldots, \pm x_{(n-1)}, \pm x_{n}, \pm\left(A_{1}-0\right)$ by the condition (ii) of the construction of IBN designs
i.e., $\pm x_{2}, \pm x_{3}, \ldots, \pm x_{(n-1)}, \pm x_{n}, \pm x_{1}$
$S^{\prime}:\left(A_{2}^{\prime}-A_{1}^{\prime}\right),\left(A_{3}^{\prime},-A_{2}^{\prime}\right), \ldots,\left(A_{n}^{\prime}-A_{(n-1)}^{\prime}\right),\left(A_{2}^{\prime}-A_{n}^{\prime}\right)$
i.e., $\left(A_{1}-A_{2}\right),\left(A_{2}-A_{3}\right), \ldots,\left(A_{(n-1)}-A_{n}\right),\left(A_{n}-A_{1}\right)$
i.e., $\pm x_{2}, \pm x_{3}, \ldots, \pm x_{(n-1)}, \pm x_{n}, \pm\left(0-A_{1}\right)$
i.e., $\pm x_{2}, \pm x_{3}, \ldots, \pm x_{(n-1)}, \pm x_{n}, \pm x_{1}$

All the elements of S^{*} i.e., $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \approx\left\{a_{1}, a_{2}, \ldots, a_{r}, c_{1}, c_{2}, \ldots, c_{s}\right\}$. Here it is to claim that all values of a_{i} 's and c_{j} 's are distinct. The proof of distinctness of c_{j} 's will be laid down first. Secondly, the proof of distinctness among a_{i} 's will follow.

Let $\left|\sum_{j=1}^{s} c_{j}\right|=q$ where $n+1 \leq q \leq 2 \mathrm{n}$ for determining the value of c_{1} 's
Then $c_{1}=q-v$
We know that $\left|\sum_{j=1}^{1} c_{j}\right|+\left|\sum_{j=2}^{s} c_{j}\right|=\left|\sum_{j=1}^{s} c_{j}\right|$ as c_{j} 's are all negative

$$
\begin{aligned}
\left|\sum_{j=2}^{s} c_{j}\right| & =\left|\sum_{j=1}^{s} c_{j}\right|-\left|\sum_{j=1}^{1} c_{j}\right| \\
& =q-\left|c_{1}\right| \\
& =2 q-v, \text { since } v>q \text { and equation (3.6) } \\
& =2 c_{1}+v
\end{aligned}
$$

where $n+1 \leq 2 c_{1}+v \leq 2 n$ for determining the value of c_{2} 's.

$$
\text { Then } \begin{align*}
c_{2} & =\left|\sum_{j=2}^{s} c_{j}\right|-v \\
& =2 c_{1} \tag{3.7}
\end{align*}
$$

We know that $\left|\sum_{j=1}^{2} c_{j}\right|+\left|\sum_{j=3}^{s} c_{j}\right|=\left|\sum_{j=1}^{s} c_{j}\right|$ as c_{j} 's are all negative

$$
\begin{aligned}
\left|\sum_{j=3}^{s} c_{j}\right| & =\left|\sum_{j=1}^{s} c_{j}\right|-\left|\sum_{j=1}^{2} c_{j}\right| \\
& =q-\left|c_{1}+c_{2}\right| \\
& =4 q-3 v, \text { since } v>q \text { and equation (3.6) } \\
& =4 \mathrm{c}_{1}+\mathrm{v}
\end{aligned}
$$

where $n+1 \leq 4 \mathrm{c}_{1}+v \leq 2 n$ for determining the value of c_{3} 's.

$$
\text { Then } \begin{align*}
c_{3} & =\left|\sum_{j=3}^{s} c_{j}\right|-v \\
& =4 c_{1} . \tag{3.8}
\end{align*}
$$

In general for determining c_{k} 's, we know that

$$
\begin{aligned}
& \sum_{\mathrm{j}=1}^{(\mathrm{k}-1)} c_{\mathrm{j}} \mid+\left|\sum_{\mathrm{j}=\mathrm{k}}^{\mathrm{s}} \mathrm{c}_{\mathrm{j}}\right|=\left|\sum_{\mathrm{j}=1}^{\mathrm{s}} \mathrm{c}_{\mathrm{j}}\right| \text { as } c_{j}^{\prime} ’ \mathrm{~s} \text { are all negative } \\
&\left|\sum_{j=k}^{s} c_{j}\right|=\left|\sum_{j=1}^{s} c_{j}\right|-\left|\sum_{j=1}^{(k-1)} c_{j}\right| \\
&=q-\left|c_{1}+c_{2}+\ldots+c_{(k-1)}\right| \\
&=q-\left|c_{1}+2 c_{1}+\ldots+2(k-1) c_{1}\right|, \text { by the equations (3.6), (3.7) \& (3.8) } \\
& \quad \text { i.e., } c_{p}=2^{(p-1)} c_{1} ; p=1,2, \ldots, k-1
\end{aligned}
$$

where $n+1 \leq 2(k-1) c_{1}+v \leq 2 n$ for determining the value of c_{k} 's; $1 \leq k \leq s-1$.

$$
\text { Then } \begin{align*}
c_{k} & =\left|\sum_{j=1}^{(k-1)} c_{j}\right|-v \\
& =2^{(k-1)} c_{1} . \tag{3.9}
\end{align*}
$$

The last element, c_{s}, of c type in S^{*}, we know that

$$
\begin{aligned}
& \left|\sum_{j=1}^{(s-1)} c_{j}\right|+\left|\sum_{j=s}^{s} c_{j}\right|=\left|\sum_{j=1}^{s} c_{j}\right| \text { as } c_{j} \text { 's are all negative } \\
& \left|\sum_{j=s}^{s} c_{j}\right|=\left|\sum_{j=1}^{s} c_{j}\right|-\left|\sum_{j=1}^{(s-1)} c_{j}\right| \\
& =q-\left|c_{1}+c_{2}+\ldots+c_{(s-1)}\right| \\
& =q-\left|c_{1}+2 c_{1}+\ldots+2(s-1) c_{1}\right| \text {, by the equation (3.9) } \\
& =q-|(2(s-1)-1)(q-v)|
\end{aligned}
$$

$$
\begin{aligned}
& =2(s-1) q-(2(s-1)-1) v, \text { since } v>q \text { and } s \text { is natural } \\
& =2(s-1) c_{1}+v .
\end{aligned}
$$

By the Steps (1), (2) and so on, proposed in the construction of IBN designs, Section 3, the value of the last element, c_{s} is obtained when $1 \leq\left|\sum_{j=s}^{s} c_{j}\right| \leq n$ i.e., $1 \leq 2(s-1) c_{1}+$ $v \leq n$.

$$
\text { Then } c_{s}=-\left|\sum_{j=s}^{s} c_{j}\right| \text { i.e. }-\left(2(s-1) c_{1}+v\right) .
$$

Therefore, by the condition (i) of the construction of IBN design,

$$
\begin{equation*}
c_{1} \neq c_{2} \neq c_{3} \neq \ldots \neq c_{s} \tag{3.10}
\end{equation*}
$$

under the reduction module of v i.e., $2 n+1$ as $c j \in\{-1,-2,-3, \ldots,-n\}$.
From the condition (v) of the construction of IBN designs, $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}=\{1,2,3, \ldots, n\}-\left\{-c_{1},-c_{2}, \ldots,-c_{s}\right\}$. The set $\left\{a_{1}, a_{2}, \ldots, a_{r}, c_{1}, c_{2}, \ldots, c_{s}\right\}$ can be partition into four subsets (i) $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ (ii) $\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$ (iii) $\left\{-a_{1},-a_{2}, \ldots,-a_{r}\right\}$ and (iv) $\left\{-c_{1},-c_{2}, \ldots,-c_{s}\right\}$. From the relation (3.1), all the elements in the subset (ii) are distinct. Now, as c_{j} 's are distinct and $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}=$ $\{1,2,3, \ldots, n\}-\left\{\right.$ all determined values of c_{j} 's $\}$, all the elements in the subset (i) are also distinct. Further, $a_{1}, a_{2}, \ldots, a_{r}, c_{1}, c_{2}, \ldots, c_{s}$ are distinct and consequently, by the condition (v) of the construction of IBN design, $-a_{1},-a_{2}, \ldots,-a_{r},-c_{1},-c_{2}, \ldots,-c_{s}$ are distinct. By condition (i) of the construction of IBN design, $a_{i} \neq c_{j}$ for all $i \& j$ i.e., any two elements belong to the different subsets $(i) \&(i v)$ are distinct. Further, by the condition (v) of the construction of IBN design, $a_{i} \in\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$ i.e., any two elements belong to the different subset (ii) \& (iii) are distinct. Similarly, it is know that $c_{j} \in\{-1,-2,-3, \ldots,-n\}$ and since $c_{j} \equiv\left(v+c_{j}\right) \bmod (2 n+1)$, then $\left(v+c_{j}\right) \in\{n+1, n+2, \ldots, 2 n\}$; where $v=2 n+1$ i.e., any two elements belonged to the different subsets (ii) \& (iv) are distinct. Since $a_{i} \in\{1$, $2,3, \ldots, \mathrm{n}\}$ and $a_{i} \equiv\left(v-a_{i}\right) \bmod (2 n+1)$, then $\left(v-a_{i}\right) \in\{n+1, n+2, \ldots, 2 n\}$. Similarly, it concludes that $a_{j} \neq\left(v-a_{j}\right)$, i.e., any two elements belonged to the different subsets (i) \& (iii) are distinct.
As S^{*} i.e., $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \approx\left\{a_{1}, a_{2}, \ldots, a_{r}, c_{1}, c_{2}, \ldots, c_{s}\right\}$ as $a_{1}, a_{2}, \ldots, a_{r}, c_{1}, c_{2}, \ldots, c_{s}$ are distinct. Further, among the totality of the backward and the forward difference given in (3.4) and (3.5), every non-zero elements of $\operatorname{GF}(2 n+1)$ i.e., $\{1,2,3, \ldots, n\}$ under $\bmod (2 n+1)$ repeats twice. Hence by the Lemma proposed by Rees (1967) the theorem is proved.
An illustration of the theorem is being given below:
Example: Let $n=6$, then $v=13$, by the relation (3.1), $\left|\sum_{j=1}^{s} c_{j}\right|=\frac{n(n+1)-(2 p v)}{4}$ i.e., 4 where $p=1$, which lies between 1 and n i.e., $4 €\{1,2,3, \ldots, n\}$. The value of c_{1} is substituted by $-\left|\sum_{j=1}^{s} c_{j}\right|$ i.e., -4 . Then the process to find c_{j} 's is determined and clearly s $=1$. Obviously, $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}=\{1,2,3,4,5,6\}-\left\{-c_{1}\right\}$ i.e., $\{1,2,3,5,6\}$ and $r=$ $n-1$ i.e., 5.
A set S^{*} i.e., $\{1,3,5,6,-4,2\}$ such that $2\left|x_{1}\right|=\left|x_{n}\right|$. Here S^{*} is transformed to the sets $S=\{1,4,9,2,11,0\} \bmod (13)$ and $S=\{12,9,4,11,2,0\}$. These two sets, S and S^{\prime}, when developed under reduction module (13) give an IBN design with the parameters $\mathrm{v}=13, \mathrm{~b}=$ $26, r=12, k=6, \lambda=2$.

References:

1. Ahmed, R. and Akhtar, M. (2010). Some new methods to reduce the number of blocks for neighbour designs, Aligarh Journal of Statistics, Vol. 30, 55-64.
2. Azais, J. M., Bailey, R. A. and Monod, H. (1993). A catalogue of efficient neighbor designs with border plots, Biometrics, 49, 1252-1261.
3. Bailey, R. A. and Druilhet, P. (2004). Optimality of neighbour-balanced designs for total effects. Ann. Statist., 32, 4,1650-1661.
4. Chaure, N. K., and Misra, B.L. (1996). On construction of generalized neighbor design. Sankhya, Series B. 58, 245-253.
5. Das, A. D. and Saha, G. M. (1976). On construction of Neighbor designs. Cal. Statist. Assoc. Bull., 25, 151-163.
6. Dey, A. and Chakravarty, R. (1977). On the construction of some classes of neighbor designs. J. Indian. Soc. Agricultural Statist., 29, 97-104.
7. Hwang, F. K. (1973). Construction of some classes of neighbor designs. Ann. Statist., 1,786-790.
8. Hwang, F. K. and Lin, S. (1977). Neighbor designs. J. Combin. Theory, Series A. 23, 302-313.
9. Kageyama, S. (1979). Note on designs in serology. J. Japan Statist. Soc. 9(1), 37-40.
10. Lawless, J.F (1971). A note on certain types of BIBD's balanced for residual effects. Ann. Math. Statist., 42, 1439-1441.
11. Meitei, K. K. Singh (1996). A series of incomplete block neighbour designs. Sankhya, Series B. 58, 145-147.
12. Misra, B. L. Bhagwandas and Nutan, S. M. (1991). Families of neighbor designs and their analyses. Communication in Statistics-Simulation and Computation, 20, (2 and 3), 427-436.
13. Rees, D. H. (1967). Some designs of use in serology. Biometrics, 23, 779-791.

Dhanashree Publications

Flat No. 01, Nirman Sagar CHS, Thana Naka, Panvel, Raigad - 410206

